MASS LOADING OF BOW-SHOCK PULSAR WIND NEBULAE

Giovanni Morlino

INFN/GSSI, L'Aquila, Italy Purdue University, INDIANA

In collaboration with: M. Lyutikov & M. Vorster

Accepted for publication in MNRAS (arXiv:1505.01712)

High Energy Phenomena in Relativistic Outflow V La Plata, 5-8 October 2015

THE BASIC PICTURE

If the kick velocity of the NS >~ 100 km/s

Pulsar can escape from the SNR when it is enough powerful to be observed

Structure of bow-shock nebula

Typical NS speed: $V_{NS} \sim 100-500 \text{ km/s} \rightarrow \text{Mach number >10}$ (highly supersonic)

Structure of bow-shock nebula from simulations

[From Bucciantini, Amato & del Zanna 2005, A&A 434,189]

Bowshock-tail PWNe in X-rays

[Pictures from O. Kargaltsev]

Structure of bow-shock nebula in presence of neutrals

Structure of bow-shock nebula in presence of neutrals

[From Brownsberger & Romani 2014, arXiv:1402.5465]

- 6 over 9 known H α bow shock nebulae show rapid expansion and/or contraction of the tale

- These features are axisymmetric along the propagation axes of the pulsar

This suggest that the tale could be modified by internal dynamics rather than by external effects (non uniform ISM)

Cometary shane	Pulsar	\dot{E}^a_{34} erg/s	Lg $ au$ y	d ^b kpc	μ _T mas/y	$\begin{smallmatrix} F_{\gamma}^c \\ 10^{-11} \end{smallmatrix}$	$F^{c}_{x,NT} \ 10^{-13}$	θ_a	$F_{a{ m H}lpha} \over \gamma/{ m cm}^2/{ m s}$
Anomaluos features	J0437-4715 J0742-2822 J1509-5850 J1741-2054 J1856-3754	0.55 19.0 68.2 12.6 3.E-4	9.8 5.2 5.2 5.6 6.5	0.16 P 2.0 D 2.6 D 0.38 D 0.16 P	141.3 29.0 332.0	1.67 1.72 12.70 11.70	7.9 <0.2 3.0 2.0 0.0	9.3 1.4 1.2 2.3 0.85	6.7E-3 1.8E-4 1.4E-4 4.6E-3 3.E-5
	J1959+2048 J2030+4415 J2124-3358 J2225+6535	21.9 2.90 0.68 0.16	9.5 5.8 9.8 6.1	2.5 D 0.9 G 0.30 P 1.86 D 1.00	30.4 52.7 182.0	1.7 5.8 3.7	0.7 2.8 0.8 0.0	3.6 1.1 5.0 0.12	1.8E-3 1.8E-3 5.3E-4 3.6E-5

Guitar nebula (powered by PRS B2224+65)

[From Gautam A. et al. 2013]

Balmer emission: images from HST

From Palomar Observatory (1995)

PSR J2124-3358

[From Brownsberger & Romani 2014, ApJ accepted arXiv:1402.5465]

PSR J2124-3358

[From Brownsberger & Romani 2014, ApJ accepted arXiv:1402.5465]

PSR J2124-3358

[From Brownsberger & Romani 2014, ApJ accepted arXiv:1402.5465]

PSR J0742-2822

[From Brownsberger & Romani 2014, ApJ, arXiv:1402.5465]

H α image with background star light subtracted PSR J0742-28 Jones et a 7:42:50.0

$$d_{S} = \left(\frac{L_{wind}}{4\pi V_{NS}^{2}\rho_{0}c}\right)^{1/2} = 4 \cdot 10^{15} \left(\frac{L_{wind}}{10^{34} erg}\right)^{1/2} \left(\frac{V_{NS}}{300 \, km/s}\right) \left(\frac{n_{0}}{cm^{-3}}\right)^{-1/2} cm$$

Stagnation distance

$$\lambda_{ion, wind} = \frac{V_{NS}}{n_e \sigma_{Bethe} c} \approx 4.10^{23} \left(\frac{V_{SN}}{300 \, km/s}\right) \left(\frac{n_e}{10^{-10} \, cm^{-3}}\right)^{-1} cm$$
 Ionization length scale of hydrogen due to collision with relativistic electrons

Our quasi 1-D mathematical approach

MODEL ASSUMPTIONS

- Stationarity $\rightarrow \partial_t[...] = 0$
- relativistic e^+ - e^- wind plasma
- Cold proton fluid injected through ionization
- Quasi 1-D along the propagation direction $x \rightarrow A = A(x)$
- No magnetic field
- Ram pressure is neglected

Our quasi 1-D mathematical approach

MODEL ASSUMPTIONS

- Stationarity $\rightarrow \partial_t[...] = 0$
- relativistic e^+ - e^- wind plasma
- Cold proton fluid injected through ionization
- Quasi 1-D along the propagation direction $x \rightarrow A = A(x)$
- No magnetic field
- Ram pressure is neglected

Relativistic conservation equation along the flux tube for a stationary system

$$\partial_{x} [n_{e,p} u A] = \dot{n}_{e,p} A'$$
$$\partial_{x} [w \gamma_{w} u A] = q c^{2} \gamma_{0} A'$$

$$\partial_x [w u^2 A] + c^2 A \partial_x P = q c^2 \gamma_o A' V_0$$

FLUX OF PARTICLE **NUMBER**

ENERGY FLUX

MOMENTUM FLUX

$$q = \dot{n}(m_e + m_p)$$
$$\dot{n} = n_N n_{ph} \bar{\sigma}_{ph} c$$

RATE OF MASS LOADING (with constant photon density)

$$P = P_0$$

PRESURE EQUILIBRIUM BETWEEN WIND AND SHOCKED ISM

Our quasi 1-D mathematical approach

MODEL ASSUMPTIONS

- Stationarity $\rightarrow \partial_t [...] = 0$
- relativistic e^+ - e^- wind plasma
- Cold proton fluid injected through ionization
- Quasi 1-D along the propagation direction $x \rightarrow A = A(x)$
- No magnetic field
- Ram pressure is neglected

Relativistic conservation equation along the flux tube for a stationary system

$$\partial_{x} [n_{e,p} u A] = \dot{n}_{e,p} A'$$

$$\partial_{x} [w \gamma_{w} u A] = q c^{2} \gamma_{0} A'$$

$$\partial_{x} [w u^{2} A] + c^{2} A \partial_{x} P = q c^{2} \gamma_{o} A' V_{0}$$

FLUX OF PARTICLE NUMBER

ENERGY FLUX

MOMENTUM FLUX

 $A' = A_1$

Mass loading only through the initial cross section

Mass loading everywhere

RATE OF MASS LOADING (with constant photon density)

$$P = P_0$$

PRESURE EQUILIBRIUM BETWEEN WIND AND SHOCKED ISM

G. Morlino, La Plata – 8 Oct. 2015

20

200

G. Morlino, La Plata – 8 Oct. 2015

Analytic solution for relativistic e^+-e^- wind (mass loading everywhere):

Expansion velocity can be > wind speed > ISM sound speed → stationary quasi 1-D approach no more valid Scenario $A \rightarrow$ only through the initial cross section

Analytic solution for relativistic e^+ - e^- wind

Application to J0742-2822

Application to J0742-2822

Effect of magnetic field in the wind

Toroidal component

Magnetic flux conservation:

 $\overline{B}_{\phi} u_{x} R = const$ $R \propto \sqrt{A} \propto u^{-1/2} \rightarrow \overline{B}_{\phi}(x) \propto 1/\sqrt{u}$

Poloidal component increases:

- \rightarrow magnetic hoop stress increases
- \rightarrow the transverse expansion is reduced
- \rightarrow synchrotron emission increases

 $j_{syn} \propto n_e \overline{B}^2$ $n_e u_x A = const \rightarrow n_e = const$

Poloidal component

Magnetic flux conservation:

$$\bar{B}_x A = const \rightarrow \bar{B}_x(x) \propto u$$

Poloidal component decreases:

- \rightarrow No effects on the tale expansion
- \rightarrow synchrotron emission decreases

Mouse PWN vs. PSR J1509-5850

to map the magnetic field structure.

J1509 and Mouse PWNe are different:

 X-ray radio correlation in Mouse vs. anticorrelation in J1509 PWN

 Anticorrelation is difficult to explain by synch. cooling only

• In Mouse magnetic field is parallel to the tail, in J1509 tail it is perpendicular.

Mouse PWN vs. PSR J1509-5850

CONCLUSIONS

- Neutral Hydrogen from ISM can easily penetrate into the relativistic wind of bow-shock pulsar wind nebulae
- Internal dynamics of the wind can be strongly affected by neutrals on the typical mass loading scale
 - \rightarrow The flow slows down and expands
 - \rightarrow The expansion can produce secondary shocks where the H α emission is enhanced

 \rightarrow Secondary shocks can induce the head-shoulder shape observed in many H α nebulae

◆ The stationary quasi 1-D approach fails for very rapid mass loading
 → 2D and time dependent simulations are needed to get

 a comprehensive solution

Magnetic filed cannot be neglected!