(LC et al 2015. prelim results)

Three-dimensional simulations of variable GRB jets

Dr. Diego López Cámara (IA-UNAM)

Dr. Davide Lazzati (Oregon State University)

Dr. Brian Morsony (University of Maryland)

GRBs (no GRB is the same as any other)

> 4000 and all are \neq

 $\log_{10}^{0.5} \log_{10}^{0.5} (\Delta t)^{1.5}$

Normal Probability Plot

 $\log_{10}^{0.5} (\delta t)^1$

Normal Probability Plot

0.99 0.997

> 0.99 0.98

.<u></u>€ 0.95 robabili

ď

ulativ

O 0.50

0.25

0.10 0.05

0.02

0.01

0.003

0.999

0.997

0.99

0.98

brobability 0.90 0.75

Cumulative p 0.20 0.10 0.05

0.02 0.01 0.003

0.001

0.5

0.001

Variability in a high fraction on GRBs

$$\Delta t_{\text{active}} \approx \Delta t_{\text{quiescence}}$$

 Δt_{active} process ≠ $\Delta t_{quiescence}$ process

10²

δt histogram

10° St(coc)

350

Objective

3D simulations of variable GRB jets

$$\Delta t_{active} + \Delta t_{quiescence}$$

Comparison vs observations

Model (3D variable jet + progenitor + ISM)

Progenitor 16 M_o (16TI Woosley & Heger 2006)

 $\frac{\text{ISM}}{\rho_{\text{ISM}}} = 10^{-10} \text{ g cm}^{-3}$

Jet

L = 5.33 x 10⁵⁰ erg s⁻¹ $r_0 = 10^9$ cm ($\Delta M \approx 12 M_{\odot}$) $\Gamma_0 = 5$ (Γ_{∞} =400) $\theta = 10^\circ$

...Emission

Model (3D variable jet + progenitor + ISM)

Model	3D/2D	$\Delta t(s)$	$t_{max}(s)$	Δ	$t_{bo}(s)$
m3D0.1lr	3D	0.1	17.40	LR	5.60
m3D0.5lr	3D	0.5	15.20	LR	7.80
m3D1.0lr	3D	1.0	17.13	LR	6.73
m3D2.0lr	3D	2.0	13.33	LR	6.80
m m3D0.1hr	3D	0.1	13.50	HR	11.00
m3Donlr	3D	always on	7.80	LR	5.27
m2D0.1lr	$2\mathrm{D}$	0.1	50.00	LR	5.02
m2D0.5lr	$2\mathrm{D}$	0.5	50.00	LR	10.07
m2D1.0lr	$2\mathrm{D}$	1.0	50.00	LR	11.93
m2D2.0lr	$2\mathrm{D}$	2.0	50.00	LR	12.34
$m2Dranlr^*$	$2\mathrm{D}$	random	50.00	LR	-
*Note: 20 models					

Flash 2.5 (3D+AMR) (Fryxell et al 2000)

Mesh: (5.12, 25.60, 5.12) x 10¹¹ cm

Resolution: $\Delta x = \Delta y = \Delta z = 7.8125 \text{ x } 10^6 \text{ cm}$

Results (3D 0.5 s pulsed model)

Results (3D 0.5 s pulsed model)

Pulses **↓** $\rho - \mathbf{\uparrow}\Gamma$

t_{bo} = 7.8 s

2 phases pre-t_{bo} (**↓**-relativistic) post-t_{bo} (ultra-relativistic)

Results (3D pulsed models)

Pulses **↓**ρ – **↑**Γ

t_{bo} = 7.8 s

2 phases pre-t_{bo} (**↓**-relativistic) post-t_{bo} (ultra-relativistic)

Γ > 30

Same behaviour in all models ($\neq t_{bo}, \neq \Gamma$)

 $\Gamma \alpha \Delta t$?

Results (3D pulsed models)

Pulses $\mathbf{\Psi} \rho - \mathbf{\Lambda} \Gamma$

t_{bo} = 7.8 s

2 phases pre-t_{bo} (**↓**-relativistic) post-t_{bo} (ultra-relativistic)

Γ > 30

Same behaviour in all models ($\neq t_{bo}, \neq \Gamma$)

 $\Gamma \alpha \Delta t$?

ΓαΔt 🗸

Results (photospheric luminosity)

Variability behavior present in the LC

We ran a set of 2D models excatly the same input conditions as the 3D

Results (3D vs 2D)

 $t_{bo} 2D \approx t_{bo} 3D (\uparrow 10\%-50\%)$

Γ α Δt 🖌

FWHM within \approx (±1 σ)

≈ Schlieren maps (turbulence) ✓

Gral characteristics (ρ , Γ) \checkmark

2D 🗸

HR has more turbulence

 t_{bo} are comparable (≈ 2 times)

Gral characteristics (ρ , Γ) \checkmark

Resolution **//**

Results (photospheric luminosity... round 2)

Photospheric emission & comparison with observations

(using 2D models with the resolution we trust)

We ran twenty variable jet models with random $\Delta t_{active} \& \Delta t_{quiescece}$ ($\Delta t_{active} \& \Delta t_{quiescece}$ between 0-4 s)

Results (photospheric luminosity)

Models ✓ with Nakar & Piran 2002:

 Δt_{active} distribution $\neq \Delta t_{quiescence}$ distribution

But: Pulses & quiescence from same process

Golenetskii (aka internal Yonetoku) 🗸

✓ with Fermi data (Lu 2012)

Conclusions

3D and 2D variable jet models (≈) break out of the progenitor

Pulsos $\mathbf{\Psi} \rho - \mathbf{\Lambda} \Gamma$

 $\Gamma > 30$, $\Gamma \alpha \Delta t \checkmark$

Variability behavior present in the LC

Pulses & quiescence ≠ distributions (but from same process)

Reproduces Golenetskii (internal Yonetoku)