Anabella Araudo¹, Tony Bell¹, Katherine Blundell¹, Aidan Crilly² University of Oxford University of Cambridge

> High Energy Processes in Relativistic Outflows V La Plata - October 5 - 2015

INTRODUCTION

MOTIVATION AND AIMS

- Active galactic nuclei (AGN) are candidates to be sources of UHECR.
- We are interested in studying diffusive shock acceleration (DSA) in the hotspots of powerful AGN jets.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We model the thin radio emission in the hotspots of powerful radiogalaxies.

INTRODUCTION

HOTSPOTS

Bright (synchrotron) radio knots of $\sim 1-10$ kpc embedded in larger lobes of shocked plasma.

Cygnus A -VLA-

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

INTRODUCTION

JET TERMINATION SHOCKS

- Reverse shock in the jet ($v_{\rm shock} \sim v_{\rm j}$).
- Bow shock in the external medium ($v_{\rm bs} \ll v_{\rm j}$).

 Particles accelerated in the reverse shock radiate in the downstream region.

INTRODUCTION

MULTI-WAVELENGTH EMISSION

- Radio-to-optical: synchrotron.
- X-rays: Compton upscattering of CMB/synchrotron photons.

THE FR II GALAXY 4C74.26

AN INTERESTING SOURCE

PARTICLE ACCELERATION AND MAGNETIC FIELD AMPLIFICATION IN THE HOTSPOTS OF FR II GALAXIES THE FR II GALAXY 4C74.26

Multi-wavelength data

- Radio (MERLIN): yellow contours
- IR (Gemini-NIRI): red
- IR (Gemini-GMOS): green
- Optical (WHT): blue
- X (Chandra): white contours

(Adapted from Erlund et al. 2010)

(ロ) (同) (三) (三) (三) (○) (○)

NON-THERMAL ELECTRONS

- Radio-to-IR spectral index: $\alpha = 0.75$ (*p*=2.5)
- Steep IR-to-optical spectrum: synchrotron turnover ν_c.
- Maximum energy of electrons: $E_{e,\max} = \gamma(\nu_c)m_ec^2$.

(Erlund et al. 2010)

(日) (日) (日) (日) (日) (日) (日)

RADIO-TO-OPTICAL: SYNCHROTRON

- Emitting electrons $\gamma \sim 5 \times 10^3 \left(rac{
 u}{
 m GHz}
 ight)^{0.5} \left(rac{B}{100 \mu
 m G}
 ight)^{-0.5}$
- Cooling length $l_{\text{cooling}} \sim 12'' \left(\frac{\nu}{\text{GHz}}\right)^{-0.5} \left(\frac{B}{100 \,\mu\text{G}}\right)^{-1.5} \left(\frac{v_{\text{shock}}}{c/3}\right)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

X-RAYS: UPSCATTERING OF CMB PHOTONS -IC-

- IC cooling length $\gg 10$ arcsec.
- Adiabatic expansion is the dominant cooling mechanism.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MORE SOURCES...

MORE SOURCES

Is 4C74.26 the only source with a large aspect ratio?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

HIGHLY RESOLVED HOTSPOTS @ 8.4 GHZ

Synchrotron cooling length

$$\frac{l_{8.4}}{\rm kpc} \sim 25 \left(\frac{\nu}{8.4\,{\rm GHz}}\right)^{0.5} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-1.5} \left(\frac{v_{\rm shock}}{c/3}\right)$$

• Observed shock downstream length vs $B_{\rm eq}$

HIGHLY RESOLVED HOTSPOTS @ 8.4 GHZ

Synchrotron cooling length

$$\frac{l_{8.4}}{\rm kpc} \sim 25 \left(\frac{\nu}{8.4 \,\rm GHz}\right)^{0.5} \left(\frac{B}{100 \,\mu\rm G}\right)^{-1.5} \left(\frac{v_{\rm shock}}{c/3}\right)$$

Observed shock downstream length vs B_{eq}

(REAL) SIZE DOWNSTREAM THE SHOCK

• Hotspots can be modelled as cylinders:

$$l_{\text{corrected}} = \frac{l_{\text{observed}} - D\cos(\theta)}{\sin(\theta)}$$

• We calculate the maximum inclination angle θ_{\max} .

(REAL) SIZE DOWNSTREAM THE SHOCK

Advection can be ruled out for those sources with $D > 3l_{corrected}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

MORE SOURCES...

X-RAY EMISSION: IC-CMB

MAGNETIC FIELD AMPLIFICATION

HOTSPOTS AS MAGNETIC DAMPING REGIONS

- Thin synchrotron (radio) emitter: slow synchrotron cooling
- Larger X-ray emission region: determined by advection

The very thin downstream radio extent must be determined by factors other than synchrotron cooling and adiabatic expansion.

MAGNETIC FIELD AMPLIFICATION IN HOTSPOTS

Compact synchrotron emitter: region where the magnetic field is amplified by plasma instabilities.

(日) (日) (日) (日) (日) (日) (日)

FROM OBSERVATIONS TO PLASMA PHYSICS

Synchrotron turnover at ν_c : the maximum energy of non-thermal electrons is

$$\gamma_{\rm c} \sim 4.5 \times 10^5 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right)^{0.5} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-0.5}$$

• Synchrotron cooling: $t_{\rm acc} = t_{\rm synch}$

$$\frac{s}{\rm cm} \sim 7 \times 10^5 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right)^{1.5} \left(\frac{v_{\rm shock}}{c/3}\right)^{-1} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-1.5}$$

• Hillas constraint: $t_{\rm acc} = R_{\rm j}/v_{\rm sh}$:

$$\frac{s}{\rm cm} \sim 3.7 \times 10^5 \left(\frac{\nu_{\rm c}}{10^{14} \,\rm Hz}\right) \left(\frac{R_{\rm j}}{100 \,\rm pc}\right)^{-1} \left(\frac{v_{\rm shock}}{c/3}\right)^{-1} \left(\frac{B}{100 \,\mu\rm G}\right)^{-3}$$

FROM OBSERVATIONS TO PLASMA PHYSICS

 In lepto-hadronic jets, s must be similar or larger than the ion skin depth

$$rac{c}{\omega_{
m pi}} \sim 2.3 imes 10^9 \left(rac{n}{10^{-4} \, {
m cm}^{-3}}
ight)^{-0.5} ~{
m cm}.$$

 γ_c must be determined by factors other than synchrotron cooling and the Hillas constraint.

• If
$$s = c/\omega_{\rm pi}$$
:
 $\frac{D}{D_{\rm Bohm}} \sim 10^4 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right)^{0.5} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-1.5} \left(\frac{n}{10^{-4}\,{\rm cm}^{-3}}\right)^{0.5}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

MAGNETIC FIELD AMPLIFICATION

LIMIT ON ION ACCELERATION

- Protons can be accelerated to higher energies than electrons because their radiative losses are minimal.
- $D/D_{\rm Bohm} \sim 10^4$ is valid also for protons with energy $\sim \gamma_{\rm c} m_p c^2$.
- The Hillas parameter is reduced by a factor $\sim (D/D_{\rm Bohm})^{-1}.$
- Proton-energy upper limit

$$E_{p,\max} \sim 100 \text{ EeV}\left(\frac{D}{D_{\text{Bohm}}}\right)^{-1} \sim 10 \text{ PeV}$$

(日) (日) (日) (日) (日) (日) (日)

CONCLUSIONS I

We model the radio to X-ray emission in hotspots of FR II galaxies.

- Compact radio emission region: it is too thin to be the result of fast synchrotron cooling.
- Extended X-ray emission region: determined by adiabatic expansion.

 The thin synchrotron emitter is determined by damping of the magnetic field.

CONCLUSIONS II

• Turnover of the synchrotron spectrum at $\nu_{\rm c} \gtrsim 10^{14}$ GHz requires $\lambda \gg r_{\rm g}$ (i.e. the acceleration mechanism is slow):

$$\frac{D}{D_{\rm Bohm}} \sim 10^4 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right)^{0.5} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-1.5} \left(\frac{n}{10^{-4}\,{\rm cm}^{-3}}\right)^{0.5}$$

• If ions are accelerated as well, the maximum proton energy at the jet termination shock is only 10 PeV instead of the 100 EeV indicated by the Hillas parameter.

This may have important implications for the understanding of the origins of UHECR.

FINAL REMARKS

Extra slides

RADIO-TO-OPTICAL SYNCHROTRON EMISSION

$$\begin{split} & \text{Break } \nu_{\text{br}}: t_{\text{acc}} = t_{\text{syn}} \Rightarrow \\ & \frac{B}{\mu \text{G}} \sim 100 \left(\frac{\nu_{\text{br}}}{10 \,\text{GHz}}\right)^{1/3} \left(\frac{v_{\text{sh}}}{10^{10} \,\text{cm s}^{-1}}\right)^{2/3} \left(\frac{L}{\text{kpc}}\right)^{-2/3} \\ & \text{Turnover } \nu_{\text{c}}: t_{\text{adv}} = t_{\text{syn}} \Rightarrow \frac{\lambda}{L} \sim 0.05 \left(\frac{\nu_{\text{br}}}{\nu_{\text{c}}}\right) \left(\frac{v_{\text{sh}}}{10^{10} \,\text{cm s}^{-1}}\right) \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

FINAL REMARKS

IC-CMB + SSC

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

MAGNETIC FIELD AMPLIFICATION IN HOTSPOTS (I)

• Synchrotron turnover $\nu_c \sim 10^{14}$ GHz: the maximum energy of non-thermal electrons is

$$\gamma_{\rm max} \sim 4.5 \times 10^5 \left(\frac{\nu_{\rm c}}{10^{14} \,{\rm Hz}}\right)^{0.5} \left(\frac{B}{100 \,\mu{\rm G}}\right)^{-0.5}$$

• The Larmor radius of these electrons is

$$\frac{r_{\rm g}(\gamma_{\rm max})}{\rm cm} \sim 9 \times 10^{12} \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right)^{0.5} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-1.5}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Particle acceleration and magnetic field amplification in the hotspots of FR II galaxies

FINAL REMARKS

WEIBEL INSTABILITIES

• The amplified magnetic field is structured on a scale *s* of the order of ion skin depth

$$\frac{c}{\omega_{\rm pi}} \sim 2.3 \times 10^9 \left(\frac{n}{10^{-4} \, {\rm cm}^{-3}}\right)^{-0.5} \ {\rm cm}$$

 Quickly decay behind the shock (Chang et al. 2008, Lemoine 2013)

$$t_{\rm d} \sim \left(\frac{s}{c/\omega_{\rm pe}}\right)^2 \frac{s}{c}.$$

- $B \propto z^{-1}$ accounts for the afterglow emission in (ultra relativistic) GRB jets (Piran & Sari).
- Can Weibel instabilites explain also the thin downstream extent of the jet termination shocks in FR II jets?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WEIBEL INSTABILITIES + SYNCHROTORN COOLING

•
$$t_{\rm acc} = t_{\rm synch}$$

$$\gamma_{\rm max,syn} \sim 5.1 \times 10^3 \, s^{1/3} \left(\frac{v_{\rm sh}}{c/3}\right)^{1/3}$$

•
$$\gamma_{\max} = \gamma_{\max, \text{syn}}$$
:

$$\frac{s}{\rm cm} \sim 7 \times 10^5 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right)^{1.5} \left(\frac{v_{\rm sh}}{c/3}\right)^{-1} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-1.5}$$
$$s \sim 3 \times 10^{-4} \frac{c}{\omega_{\rm pi}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

.

WEIBEL INSTABILITIES + HILLAS CONSTRAINT

• By comparing the acceleration timescale $t_{\rm acc}$ with a typical timescale $R_{\rm j}/v_{\rm sh}$:

$$\frac{\lambda}{\rm cm} \sim \left(\frac{R_{\rm j}}{20}\right) \left(\frac{v_{\rm sh}}{c/3}\right) \sim 1.5 \times 10^{20} \left(\frac{R_{\rm j}}{\rm kpc}\right) \left(\frac{v_{\rm sh}}{c/3}\right)$$

• $\lambda \sim r_{\rm g}^2/s$: upper limit for the electrons maximum energy

$$\gamma_{\rm max,H} \sim 735 \, s^{0.5} \left(\frac{R_{\rm j}}{\rm kpc}\right)^{0.5} \left(\frac{v_{\rm sh}}{c/3}\right)^{0.5} \left(\frac{B}{100 \, \mu \rm G}\right)$$

• $\gamma_{\max} = \gamma_{\max,H}$:

$$\frac{s}{\rm cm} \sim 3.7 \times 10^5 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right) \left(\frac{R_{\rm j}}{100\,{\rm pc}}\right)^{-1} \left(\frac{v_{\rm sh}}{c/3}\right)^{-1} \left(\frac{B}{100\,\mu{\rm G}}\right)^{-3}$$