

IORTH-WEST UNIVERSITY UNIBESITI YA BOKONE-BOPHIRIMA IOORDWES-UNIVERSITEIT

Role of the disk environment in the observed TeV light curve from PSR B1259-63/LS 2883

Iurii Sushch^{1,2}, Brian van Soelen³ and Markus Böttcher¹ ¹North-West University, South Africa ²Ivan Franko National University of L'viv, Ukraine ³University of the Free State, South Africa

HEPRO V, La Plata, Argentina, 7 Oct 2015

PSR B1259-63/LS 2883

PSR B1259-63

- P = 48 ms
- $L_{SD} = 8 \times 10^{35} \text{ erg/s}$
- $t_c = 3.3 \times 10^5$ years
- $P_{orb} = 3.4$ years
- Eccentricity = 0.87

LS 2883

- Be star
- Circumstellar disk
- $L_{star} = 2.3 \times 10^{38} \text{ erg/s}$
- T = 27500 30000 K
- M ≈ 31 M_{sun}
- $R = 8.1 9.7 R_{sun}$
- D = 2.3 kpc

PSR B1259-63/LS 2883: unpulsed emission

Radio pulsed emission disappears as the pulsar goes behind the disk

PSR B1259-63/LS 2883: unpulsed emission

Radio pulsed emission disappears as the pulsar goes behind the disk

The unpulsed emission from the system is enhanced when the pulsar interacts with the circumstellar disk

Across the spectrum

TeV Light Curve

Romoli et al., 2015

In leptonic scenario one expects:

- Peak in TeV flux at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

In leptonic scenario one expects:

- Peak in TeV flux at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

Dubus, 2006

Gamma-gamma absorption of VHE gamma-rays by stellar photons?

In leptonic scenario one expects:

- Peak in TeV flux at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturatio

Dubus, 2006

Gamma-gamma absorption of VHE gamma-rays by stellar photons?

Absorption in the disk

van Soelen et al., 2012

Geometry of the disk

- $i = 35^{\circ}$ inclination angle of the orbit
- $i_d = 10^\circ$ inclination of the disk
- $\omega = 138.7^{\circ}$ periastron longitude
- $\theta = 1^{\circ}$ half-opening angle
- Disk plane perpendicular to the orbit plane major axis

Model assumptions

- Gamma-ray emission from the pulsar is assumed point-like
- TeV emission is assumed to be generated in the saturation regime
- Only disk is considered. Stellar photons are not taken into account

Photon density in the disk

The model of the free-free emission fit to the observational data yields an average energy density of 0.18 erg/cm³

Flux from the disk at different distances from the star

First step: approximation with the BB

- \circ Black body with T = 3000 K (to get the peak at the same frequency)
- Assumed functional dependence on the distance from the star in a way that the average energy density agrees with observations

Optical depth

TeV Light Curve

Summary

 Gamma-gamma absorption in the disk might significantly impact the TeV light curve

• Work in progress:

Correctly account for the photon distribution in the disk as a function of distance from the star – might strengthen the effect of the absorption in the disk

 Include stellar photons into the model and calculate the total absorption

Backup slides

In leptonic scenario one expects:

- Peak in TeV flux at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

Kerschhaggl, 2011

Orbital dependent adiabatic losses?

In leptonic scenario one expects:

- Peak in TeV flux at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

Takata et al., 2012

Higher conversion efficiency in the disk? SPH 3D simulations