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Instabilities in accretion
flows



Instabilities in the disks

2 |n accretion disks we can have two main types of thermal-
viscous instabilities:

* Radiation pressure instability
* Partial hydrogen ionization instability

2 They can lead to:

* Short term limit cycle oscillations in black hole x-ray
binaries (tens-hundreds seconds scales)

* Cyclic activity of quasars (scales of tens-thousands of
years)

* X-ray novae eruptions (scales of months-years)

* Long-term activity cycles in AGN (scales of millions of
years)

2 The disk can be stabilized by:
* Very strong jet/wind
* Heating prescription
* Companion star
* Viscous fluctuations
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In some states, the microquasar shows limit—cycle
oscillations of its X=ray luminosity



Instability range in the disk depends on mass
accretion rate
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Discovery of the new
microquasar

IGRJ17091-3624 1.28 GHz

NVSS J17091836227
g
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Levs = 0.8 mJdy * (-1, 1, 1.4, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048)

X-ray source 1n Scorpius
constellation

Discovered by INTEGRAL

in 2003 (Kuulkers et al.),

It brightened to 40 mCrab and 25
mCrab for 15-40 and 40-100 keV

The radio observations at 1.28
GHz in Pune

X-ray data from Chandra (2011)
showed the presence of a fast
wind 1n this object, v~ 0.03 c.

Data from GMRT (Pandey et al. 2006)



IGR J17091-3624

Active again in 2007
(Capitanio ef al. 2004) and
back In 1994, 1996, 2001

New ouTbursT in February
2011

Most probably a black hole

The accretion rate may be
close to Eddington

In some states, clearly
exhibits limit—cuycle
oscillations of X—ray
luminosity




Comparison to GRS 1915+105

Two clear differences:
(i) the time scales can be different (IGR J17091-3624 tends to be faster), and

*(ii) the average count rate (or flux) of the source can be much higher (factor 10-50) in
GRS 1915+105.

If one assumes that the period of a quasi-periodic feature is proportional to some power of
the mass of the compact object (see, e.qg., Belloni et al. 1997; Frank et al. 2002), then the
black hole in IGR J17091-3624 could be a factor of a few less massive than the 14

+ 4.4 MO of GRS 1915+105.
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Oscillations and wind in
IGR J17091



IGR J17091 flares
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X-ray lightcurve of IGR J17091;
Data from Swift XRT;
(Janiuk, Grzedzielski, Capitanio & Bianchi, 2015)



IGR J17091. Wind diagnostics

IaR J17081-3824: Chandra abzarvationg
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Spectra from Chandra ACIS-S HETG (oblID 12406 — top panel, and 12405 - bottom panel), in
6-7.5 keV. Wind components seen in 12406 are below detection treshold in w 12405, when
we assume that wind density is by factor 10 lower.



Changes of the luminosity,
temperature and density of the ;ﬁj

disk during outbursts

log Densi /cm3
log Temperature [K] 9 ty [9 1

log Height [Rg]

I I
Log density time =015 s =

0
Ios
.1

. 1.5

B

log Height [Rg]

. > 5

-3

35

log Raditis[Rg]
log Radius [Rg]

Parameters: mass of black hole 6 M_ , accretion rate 0.1 Eddington, viscosity

parameter alpha 0.1. Also, a wind, with dimensionless strength coefficient A=15,
was assumed, it takes away a part of energy flux dissipated locally in the disk.



* our own hydrodynamical code GLADIS
(GLobal Accretion Disk InStability) we
created a model which simulates the
behaviour of an accretion disk around
IGR-J17091.

* 1,5 — dimensional hydrodynamical
code, which models a geometrically thin,
Keplerian alpha-disk

* energy dissipation rate scales with the
total (including radiation) pressure
(Janiuk et al. 2000, 2002)

* pseudo-newtonian Paczynski-Wiita
potential.

* The presence of wind is important to regulate the amplitudes of disk
oscillations, to the level that reproduce the observed X-ray variability.

* Is has been also confirmed by the spectroscopic observations of the
microquasar IGR J17091



Modeling and analysis

1000

100 |

Period of outhursts [s]

1 10 100

Amplitude/mean luminosity

Amplitudes and timescales of outbursts in the accretion disk
instability model.
The wind strength parameter A governs the mass loss rate in the
wind, which is dependent n time and distance from the black hole
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Long term evolution of the source, studied with the data from Swift/XRT and RXTE/PCA.

Correlation between the X-ray flares and wind in IGR J17091.

-50 keV) are marked with points.

Data from Swift/BAT (15

Second Chandra observation (second green arrow) shows presence of fast ionized wind.

are in the

Newton (first red arrow) and first Chandra observation (first green arrow)

Observation from XMM-

heartbeat state of the source, but the wind is weak (below detection treshold)



Observed wind properties vs. model

M, g=2nfm, vnr’ N
Ar -
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Observed mass loss rate in wind. o‘ ety | | “\ W _
lonisation parameter from the BH o2, R, flrg]
spectrum (fit with the code Cloudy; G. disk |
Ferland et al. 2013).

M . =Const*(R" —r")[gls]

max

Theoretical fit from model. The Const depends on the wind “strength”,
which is able to partially stabilize the disk



Observed wind parameters wiatru vs. model
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Non-linear variability in
other BH X-ray sources



Internal instabilities In accretion disk
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Sample of X-ray novae: 2
instablity types suggested

Instabilities in aceretion discs 5

Table 1. Sample of the black hole X-reav binary sources. AT is the estimated duration of an outburst, and Fauae / Foin 15 its amplitude.
Ry /Ra is the estimated disc size in Schwarzschild units. The observations were found in the literature and taken from http: / /xte mit. edu /
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Short times cycles: stable and unstable
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Janiuk & Czerny, 2011
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Revealing the non-linear variability in X-ray sources
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Recurrence analysis method

* The method works with simulated
trajectories of complicated non-linear
systems, e.g. motion of the test particle in
the field of a black hole, given by Einstein
equations. The chaotic orbit shows high
significance of non-linear dynamics.

* Recurrence plot is a visualisation of the
recurrence matrix. The long diagonal lines
represent the situation, when the trajectory
(reconstructed from the time-series by time
delay technique) returns close to itself in
two different times

* We compare the results between real and
surrogate data, the latter have the same power
spectra, but variability is stochastic.

* The significance of chaos is defined as a
weighted difference between the Renyi entropy
K, of the data and its surrogates sample.

t[s]
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80
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40

20

see the poster by Petra Sukova...



Application to X-ray binaries

* We applied the recurrence analysis on observations of six black hole X-ray
binaries measured by RXTE satellite.

* We developed a method for distinguishing between stochastic, non-stochastic
linear and non-linear processes using the comparison of the quantification of
recurrence plots with the surrogate data.

*We tested our method on the sample of observations of the microquasar IGR
J17091-3624, which spectral states were provided by Pahari et al. (2014).
Significant results for the “"heartbeat" state were obtained.

* We examined several observations of the other five microquasars. Aside from
the well-studied binary GRS 1915+105, we found significant traces of non-linear
dynamics also in three other sources (GX 339-4, XTE J1550-564 and GRO
J1655-40).

* The non-linear behavior of the lightcurve during some of the observations gives
the evidence, that the accretion flow in the binaries is governed by low number of
non-linear equations. Possible explanation is that the accretion disc is in the state
prone to the thermal-viscous instability and is undergoing the induced limit cycle
oscillations.
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Stabilizing the disk: viscosity fluctuations due to a

Markov chain process
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Summary

IGR J17091 is another microquasar, after GRS 1915+105, that
iIn some states exhibits the limit-cycle oscillations of its X-ray
luminosity

These oscillations are plausibly explained by the intrinsic
thermal-viscous instability of the accretion disk, induced by the
radiation pressure

The fast, ionized wind ejected from the accretion disk on the
cost of a fraction of dissipated energy is a viable mechanism to
completely stabilize the disk in other states, or to govern the
moderate amplitude of the disk oscillations

In other Black Hole X-ray binaries, i.e. GX 339-4, XTE J1550
and GRO J1655, the hints of a non-linear variability were also
found, using the novel method adopted for the analysis of a
deterministic chaos process

Possible further mechanism stabilizing the oscillations in other
sources or different spectral states is a stochastic fluctuation of
the viscosity (modeled as a Markov chain process)



Thank you
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Fig. 4.— Left panels show the
hardness-intensity diagram for
flares observed during the
variability class in IGR J17091-3624
(top;

ObsID 96420-01-04-03) and GRS
19154105 (bottom; ObsID 96378-
01-01-00) occurring at an average
period of T1=70.96 seconds and
T2=63.72 seconds, respectively.
Arrows mark the time evolution.
Inset shows representative flares.
Light curves and colors are
estimated

from 1 sec averages. Intensity is
the count rate in the 2-60 keV
range (absolute channels 0-240)
and hard color is the 6.5-15.0 keV /
2-6.5 keV count rate ratio (channels
15-35 and 0-14, respectively). Right
panels show representative power
spectra from averages of 512 sec
segments during the variability
class for IGR J17091-364 (top,
ObslID:96420-01-05-000, MJD
55647.9) and for GRS 1915+105
(bottom,

ObslID:40703-01-07-00, MJD
51235.3).



Eddington ratio and distance to IGR

J17091

Large distance (> 17 kpc) suggested by
the value of N absorption (6x10*' cm™)

At spectral transition, the flux F=4x10"
erg/s/cm” implies the distance of 11-17
kpc, if the transition occurs at 4-10% of -

L_ . and black hole mass of 10 M__ >

Discrete jet ejections are observed in
radio during the state transitions
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Numerical work to test the
radiation pressure instability

z/rg

150

100

50

z/T *

50 100 160
R/'rﬂ

150

100

50

T

e T T e T T e e e

b

N T e e e

. h‘t‘\':n'fn\'.t\\"r“--"\-‘.\
e e e R R R e

.}\\'\n\'\'\\\-‘-‘au“\
e

A

L

Nt
-
1

100 150

1.00

O=<Typ /P>
[w]
3
o

0.01

0.1

1.0 10.0

= Prad a\/ Pgas a”

100.0

Fig. 3.— Measured values of the stress parameter o as a function of the time-averaged ratio

of the box-averaged radiation pressure to the box-averaged gas pressure.

The black points

define a as the time-averaged ratio of the vertically averaged stress to the box-averapged

total thermal pressure.

The blue and green points define o in the same way except with

2D global hydro-simulations show the
limit cycles (Ohsuga 2006)

MHD “shearing-box” simulations
(Hirose, Blaes i Krolik, 2009a; 2009b)




Log T time = 016 s - -

Changes of the temperature and density of the disk during its outbursts.
Colors present the profile of the disk in a log-scale, in the r-z plane.
Parameters: mass of black hole 6 M_ , accretion rate 0.1 Eddington, viscosity parameter

alpha 0.1. Also, a wind, with dimensionless strength coefficient A=15, was assumed, it
takes away a part of energy flux dissipated locally in the disk.




Abstract:

The microquasar IGR J17091, as the recently discovered analogue of the well
known source GRS 1915+105, exhibits quasi-periodic outbursts, of the period 5-
70 seconds, and regular amplitudes, frequently referred to as a 'heartbeat state’'.
We argue that these states are plausibly explained by the accretion disk
instability, driven by the dominant radiation pressure. Using our GLobal
Accretion Disk Simulation hydrodynamical code, we model these outbursts
quantitatively. We also find a correlation between the presence of massive
outflows launched from the accretion disk and stabilization of the oscillations.
We verify the theoretical predictions with the available timing and spectral
observations.

Furthermore, we postulate that the underlying non-linear differential equations
that govern the evolution of an accretion disk, are responsible for the variability
pattern of several other microquasars, including XTE J1550-564 and GX 339-4,
observed in some states. This study is based on the signatures of deterministic
chaos in the observed lightcurves of these sources, which we found using the
recurrence analysis method and comparison to the surrogate data. We discuss
these results in the frame of the accretion disk instability model.
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