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INTRODUCTION
The high energy radiation emitted by black hole X-ray binaries originates in an accretion disk. Most of the sources undergo fast and complicated variability patterns on different timescales.
The variations that are purely stochastic in their nature, are expected since the viscosity of the accretion disk is connected with its turbulent behaviour induced by magnetic instabilities. The
variability of the disk that reflects its global evolution governed by the nonlinear differential equations of hydrodynamics may not be only purely stochastic. Instead, if the global conditions
in the accretion flow are such that the system finds itself in an unstable configuration, the large amplitude fluctuations around the fixed point will be induced. The observed behaviour of
the disk will then be characterized by the deterministic chaos. The recent hydrodynamical simulations of the global accretion disk evolution confirm that the quasi-periodic flare-like events
observed in couple sources are in a good quantitative agreement with the radiation pressure instability model of the disc coupled with strong outflows in form of a wind. At least 8 of the
known BH X-ray binaries should have their Eddington accretion rates large enough for the radiation pressure instability to develop. In the current work, we aim to tackle the problem of
stochastic versus deterministic nature of the BH accretion disk variability from the analytic and observational point of view.

METHOD
We use the capabilities of the recurrence analysis, which is a
powerful tool for studying the time series and is known to
work in broad range of applications (Marwan et al., 2007).
We first pose the “null hypothesis” about the measured time
series, that the data are product of linearly autocorrelated
gaussian noise. Then according to this null hypothesis we
produce the set of surrogate time series sharing the spec-
trum and the value distribution with the original time se-
ries. This is achieved by an iterative algorithm called It-
erative Amplitude Adjusted Fourier Transform Algorithm
(IAAFT). We construct surrogates using the publicly avail-
able software package TISEAN (Schreiber & Schmitz, 2000).
The second order Rényi entropy K2, which is a measure
of positive Lyapunov’s exponents and indication of deter-
ministic chaos, is estimated for the observation and its sur-
rogates using the program rp described by Marwan et al.
(2007) and the significance of the difference between the real
and artificial data is measured.
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X-RAY OBSERVATIONS
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Fig 1 The examples of studied lightcurves for three different sources. The source names and obsID are indicated in the plots.

We analyzed the online data from the RXTE satellite for 6 different microquasars (IGR J17091-3624, GRS 1915+105 GRO J1655-
40, GX 339-4, XTE J1550-564, XTE J1650-500). We extracted the time series using Heasoft 6.16 high energy astrophysics
software package. The resulting count rate is normalized to number of PCUs, which were used for the data extraction.
Figure 1 show three examples of studied lightcurves from three different sources. Lightcurves a) and c) were extracted from
Standard 1 data mode with the full energy range 2-60 keV, the lightcurve b) was extracted using generic event data mode
from channels 5-25 (∼ 2-10 keV).

SIGNIFICANCE OF THE NON-LINEAR DYNAMICS

The first hint about the non-linear dynamics hidden in the data is that the
longest diagonal line Lmax in the RP of the observation is longer than those
from RP of the surrogates. However, this is not a definite answer, because
K2 is related with the slope of the cumulative histogram, rather than with the
end of the histogram. The example of dependence of Lmax on the recurrence
threshold ε with m = 16,∆t = 1.75s for the observation a) (red line) and its
surrogates (grey lines) can be seen in Fig. 3a).
In Fig. 3b) we show the cumulative histogram of diagonal lines and the slope
of its part used for the estimation of Kobs

2 (red line).
We define the significance of the obtained result so that it expresses how much
the valueKobs

2 differs from the mean value K̄2
surr measured in the units of the

standard deviation of the set {Ksurr
2 }100i=1 in the logarithmic scale σQsurr(ε):

S(ε) =
Nsl

N surr
Ssl − sign(Qobs(ε)− Q̄surr(ε))

NSK

N surr
SK2

(ε),

where Nsl is the number of surrogates, which have only short diagonal lines,
and N surr is the total number of surrogates, Qobs and Qsurr are the natural
logarithms of K2 entropy for the observed and surrogate data, respectively,
Ssl = 3 and SK2

is the significance computed only from the surrogates, which
have enough long lines according to the relation

SK2(ε) =
|Qobs(ε)− Q̄surr(ε)|

σQsurr(ε)
.

For further details, the reader is referred to Suková et al. (2015).
The significance depends on the parameters of the recurrence analysis (ε, m,
∆t). The dependence of S on ε for several different values of m is in Fig. 3c).
The values depend on ε, however no apparent trend can be seen.
Our final quantity is an averaged significance S̄ over interval of ε chosen so
that recurrence rate RR∈ (1%, 25%) (RR is the ratio of the number of recurrence
points to all points of recurrence matrix). The resulting S̄ for different m are
in Fig. 3d). In agreement with Thiel et al. (2004), the dependence on m is quite
weak, which supports our approach, in which we always use only one set of
[∆t,m] for each computation. Values of these parameters are estimated using
the procedures mutual and false_nearest from TISEAN.
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Fig. 3 Our analysis of XTE J1550-564.

DISCUSSION
We applied the recurrence analysis on observations of six black hole X-ray binaries observed by RXTE satellite. We developed a method for distinguishing between stochastic, non-stochastic
linear and non-linear processes using the comparison of the quantification of recurrence plots with the surrogate data. We tested our method on the sample of observations of the microquasar
IGR J17091-3624. Significant results for the “heartbeat” variable ρ state were obtained. We examined several observations of the other five microquasars. Aside from the well-studied binary
GRS 1915+105, we found significant traces of non-linear dynamics also in three other sources (GX 339-4, XTE J1550-564 and GRO J1655-40). The fact, that we have found non-linear dynamics
hidden in the light curves of almost all the studied sources means, that in genereal the evolution of the accretion disc and corona is important for the outgoing radiation. The non-linear
behaviour of the lightcurve during some of the observations gives the evidence, that the accretion flow in the binaries is governed by low number of non-linear equations. Possible explanation
is that the accretion disc is in the state prone to the thermal-viscous instability and is undergoing the induced limit cycle oscillations.
Our studies show, that the non-linear variability due to chaotic processes appears in the disk-dominated soft state and the intermediate states of the microquasars. It is planned to carry the
study of non-linear dynamics for microquasars together with a study of the whole outburst evolution and link it with the spectral state transitions and hardness-intensity changes of a given
source. Also, other characteristics, such as the presence and properties of winds launched during some states from their accretion discs, should be taken into account in our future work.

RECURRENCE ANALYSIS
The basic object of the analysis is the recurrence matrix, which de-
scribes the times, when the trajectory returns close to itself (closer
than certain threshold ε). The recurrence matrix (usually visualised
as recurrence plot – RP) is defined as follows:

Ri,j(ε) = Θ(ε− ‖ ~yi − ~yj ‖), i, j = 1, ..., N,

where ~yi = ~y(ti) are (N ) points of the reconstructed phase trajec-
tory and Θ is the Heaviside step function.
The quantification of such visual information is contained in the
histogram of diagonal lines of a certain prescribed length l,

P (ε, l) =
N∑

i,j=1

(1−Ri−1,j−1(ε))(1−Ri+l,j+l(ε))

l−1∏
k=0

Ri+k,j+k(ε).

Because Rényi’s entropy K2 is related with the cumulative his-
togram of diagonal lines pc(ε, l), describing the probability of find-
ing a line of minimal length l in the RP, by the relation

pc(ε, l) ∼ εD2e−l∆tK2 ,

we can estimate the value ofK2 as the slope of the logarithm of the
cumulative histogram versus l for constant ε.

Fig 2 The example of RP
of observation a) in Fig. 1
(red color, right lower cor-
ner) and one of its surro-
gates (green color, left up-
per corner). The real obser-
vation contains higher num-
ber of longer diagonal lines
with more regular spacing.
The noise causes the break of
lines.
The plot was computed for
ε = 4.4,∆t = 1.75s, m = 20.

PHASE SPACE RECONSTRUCTION
Measured data do not provide the phase space trajectory, it has to
be reconstructed from the observed time series with the time delay
technique. The resulting phase space vector is given as

~y(t) = {x(t), x(t+ ∆t), x(t+ 2∆t), . . . , x(t+ (m− 1)∆t)},

where x(t) is the time series, ∆t is the embedding delay and m is
the embedding dimension.
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